On the Number of Periodic Points for Expansive Pseudo-Groups


Journal article


Pablo D. Carrasco, Elias Rego, Jana Rodriguez-Hertz
Chaos, Solitons and Fractals, vol. 186, 2024


View PDF
Cite

Cite

APA   Click to copy
Carrasco, P. D., Rego, E., & Rodriguez-Hertz, J. (2024). On the Number of Periodic Points for Expansive Pseudo-Groups. Chaos, Solitons and Fractals, 186. https://doi.org/10.1016/j.chaos.2024.115245


Chicago/Turabian   Click to copy
Carrasco, Pablo D., Elias Rego, and Jana Rodriguez-Hertz. “On the Number of Periodic Points for Expansive Pseudo-Groups.” Chaos, Solitons and Fractals 186 (2024).


MLA   Click to copy
Carrasco, Pablo D., et al. “On the Number of Periodic Points for Expansive Pseudo-Groups.” Chaos, Solitons and Fractals, vol. 186, 2024, doi:10.1016/j.chaos.2024.115245.


BibTeX   Click to copy

@article{pablo2024a,
  title = {On the Number of Periodic Points for Expansive Pseudo-Groups},
  year = {2024},
  journal = {Chaos, Solitons and Fractals},
  volume = {186},
  doi = {10.1016/j.chaos.2024.115245},
  author = {Carrasco, Pablo D. and Rego, Elias and Rodriguez-Hertz, Jana}
}

In this work we consider foliations of compact manifolds whose holonomy pseudo-group is expansive, and analyze their number of compact leaves. Our main result is that in the codimension-one case this number is at most finite, and we give examples of such foliations having one compact leaf.